Enumeration of Factorizable Multi-Dimensional Permutations

نویسندگان

  • Hao Zhang
  • Daniel Gildea
چکیده

A d-dimensional permutation is a sequence of d + 1 permutations with the leading element being the identity permutation. It can be viewed as an alignment structure across d+1 sequences, or visualized as the result of permuting n hypercubes of (d+1) dimensions. We study the hierarchical decomposition of d-dimensional permutations. We show that when d ≥ 2, the ratio between non-decomposable or simple d-permutations and all d-permutations approaches 1. We also prove that the growth rate of the number of d-permutations that can be factorized into k-ary branching trees approaches ( k e d as k grows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refining Enumeration Schemes to Count According to Permutation Statistics

We develop algorithmic tools to compute quickly the distribution of permutation statistics over sets of pattern-avoiding permutations. More specfically, the algorithms are based on enumeration schemes, the permutation statistics are based on the number of occurrences of certain vincular patterns, and the permutations avoid sets of vincular patterns. We prove that whenever a finite enumeration s...

متن کامل

The Hopf Algebra of Uniform Block Permutations. Extended Abstract

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Ge...

متن کامل

Skew-merged Simple Permutations

The simple permutations in two permutation classes — the 321-avoiding permutations and the skew-merged permutations — are enumerated using a uniform method. In both cases, these enumerations were known implicitly, by working backwards from the enumeration of the class, but the simple permutations had not been enumerated explicitly. In particular, the enumeration of the simple skew-merged permut...

متن کامل

Permutation Numbers

This paper investigates some series of integers which are derived from a recursively defined sequence of permutations of words. Such a recursion can be interpreted as a dynamic system. Geometrical representations of these series appear to be self-similar, symmetrical, and factorizable. The paper also shows how some bidimensional images may be decomposed into images corresponding to permutations...

متن کامل

Multi-statistic enumeration of two-stack sortable permutations

Using Zeilberger’s factorization of two-stack-sortable permutations, we write a functional equation — of a strange sort — that defines their generating function according to five statistics: length, number of descents, number of right-to-left and left-to-right maxima, and a fifth statistic that is closely linked to the factorization. Then, we show how one can translate this functional equation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007